1801 R1 X.E1: Difference between revisions

From EPRI Nuclear LTO Wiki
Jump to navigation Jump to search
en>Monica Hurley
(Created page with "{{DISPLAYTITLE:X.E1 (NUREG-1801 R1)}} Return to AMP Table '''X.E1 ENVIRONMENTAL QUALIFICATION (EQ) OF ELECTRIC COMPONENTS''' '''Program Description''' The U.S. Nuclear Regulatory Commission (US NRC) has established nuclear station environmental qualification (EQ) requirements in [https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appa.html 10 CFR Part 50, Appendix A], Criterion 4, and [https://www.nrc.gov/reading-rm/do...")
 
(Revision 0; Reviewed by Garry Young)
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:


'''X.E1 ENVIRONMENTAL QUALIFICATION (EQ) OF ELECTRIC COMPONENTS'''
'''X.E1 ENVIRONMENTAL QUALIFICATION (EQ) OF ELECTRIC COMPONENTS'''


'''Program Description'''
'''Program Description'''

Latest revision as of 19:22, 4 October 2024

Return to AMP Table


X.E1 ENVIRONMENTAL QUALIFICATION (EQ) OF ELECTRIC COMPONENTS

Program Description

The U.S. Nuclear Regulatory Commission (US NRC) has established nuclear station environmental qualification (EQ) requirements in 10 CFR Part 50, Appendix A, Criterion 4, and 10 CFR 50.49. 10 CFR 50.49 specifically requires that an EQ program be established to demonstrate that certain electrical components located in harsh plant environments (that is, those areas of the plant that could be subject to the harsh environmental effects of a loss of coolant accident [LOCA], high energy line breaks [HELBs] or post-LOCA environment) are qualified to perform their safety function in those harsh environments after the effects of inservice aging. 10 CFR 50.49 requires that the effects of significant aging mechanisms be addressed as part of environmental qualification.

All operating plants must meet the requirements of 10 CFR 50.49 for certain electrical components important to safety. 10 CFR 50.49 defines the scope of components to be included, requires the preparation and maintenance of a list of in-scope components, and requires the preparation and maintenance of a qualification file that includes component performance specifications, electrical characteristics, and the environmental conditions to which the components could be subjected. 10 CFR 50.49(e)(5) contains provisions for aging that require, in part, consideration of all significant types of aging degradation that can affect component functional capability. 10 CFR 50.49(e) also requires replacement or refurbishment of components not qualified for the current license term prior to the end of designated life, unless additional life is established through ongoing qualification. 10 CFR 50.49(f) establishes four methods of demonstrating qualification for aging and accident conditions. 10 CFR 50.49(k) and (l) permit different qualification criteria to apply based on plant and component vintage. Supplemental EQ regulatory guidance for compliance with these different qualification criteria is provided in the DOR Guidelines, Guidelines for Evaluating Environmental Qualification of Class 1E Electrical Equipment in Operating Reactors; NUREG-0588, Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment; and Regulatory Guide 1.89, Rev. 1, Environmental Qualification of Certain Electric Equipment Important to Safety for Nuclear Power Plants. Compliance with 10 CFR 50.49 provides reasonable assurance that the component can perform its intended functions during accident conditions after experiencing the effects of inservice aging.

EQ programs manage component thermal, radiation, and cyclical aging through the use of aging evaluations based on 10 CFR 50.49(f) qualification methods. As required by 10 CFR 50.49, EQ components not qualified for the current license term are to be refurbished, replaced, or have their qualification extended prior to reaching the aging limits established in the evaluation. Aging evaluations for EQ components that specify a qualification of at least 40 years are considered time-limited aging analyses (TLAAs) for license renewal.

Under 10 CFR 54.21(c)(1)(iii), plant EQ programs, which implement the requirements of 10 CFR 50.49 (as further defined and clarified by the DOR Guidelines, NUREG-0588, and Regulatory Guide 1.89, Rev. 1), are viewed as aging management programs (AMPs) for license renewal. Reanalysis of an aging evaluation to extend the qualification of components under 10 CFR 50.49(e) is performed on a routine basis as part of an EQ program. Important attributes for the reanalysis of an aging evaluation include analytical methods, data collection and reduction methods, underlying assumptions, acceptance criteria, and corrective actions (if acceptance criteria are not met). These attributes are discussed in the "EQ Component Reanalysis Attributes" section.

This reanalysis program can be applied to EQ components now qualified for the current operating term (i.e., those components now qualified for 40 years or more). As evaluated below, this is an acceptable AMP. Thus, no further evaluation is recommended for license renewal if an applicant elects this option under 10 CFR 54.21(c)(1)(iii) to evaluate the TLAA of EQ of electric equipment.

EQ Component Reanalysis Attributes

The reanalysis of an aging evaluation is normally performed to extend the qualification by reducing excess conservatism incorporated in the prior evaluation. Reanalysis of an aging evaluation to extend the qualification of a component is performed on a routine basis pursuant to 10 CFR 50.49(e) as part of an EQ program. While a component life limiting condition may be due to thermal, radiation, or cyclical aging, the vast majority of component aging limits are based on thermal conditions. Conservatism may exist in aging evaluation parameters, such as the assumed ambient temperature of the component, an unrealistically low activation energy, or in the application of a component (de-energized versus energized). The reanalysis of an aging evaluation is documented according to the station's quality assurance program requirements, which requires the verification of assumptions and conclusions. As already noted, important attributes of a reanalysis include analytical methods, data collection and reduction methods, underlying assumptions, acceptance criteria, and corrective actions (if acceptance criteria are not met). These attributes are discussed below.

Analytical Methods: The analytical models used in the reanalysis of an aging evaluation are the same as those previously applied during the prior evaluation. The Arrhenius methodology is an acceptable thermal model for performing a thermal aging evaluation. The analytical method used for a radiation aging evaluation is to demonstrate qualification for the total integrated dose (that is, normal radiation dose for the projected installed life plus accident radiation dose). For license renewal, one acceptable method of establishing the 60-year normal radiation dose is to multiply the 40-year normal radiation dose by 1.5 (that is, 60 years/40 years). The result is added to the accident radiation dose to obtain the total integrated dose for the component. For cyclical aging, a similar approach may be used. Other models may be justified on a case-by-case basis.

Data Collection and Reduction Methods: Reducing excess conservatism in the component service conditions (for example, temperature, radiation, cycles) used in the prior aging evaluation is the chief method used for a reanalysis. Temperature data used in an aging evaluation is to be conservative and based on plant design temperatures or on actual plant temperature data. When used, plant temperature data can be obtained in several ways, including monitors used for technical specification compliance, other installed monitors, measurements made by plant operators during rounds, and temperature sensors on large motors (while the motor is not running). A representative number of temperature measurements are conservatively evaluated to establish the temperatures used in an aging evaluation. Plant temperature data may be used in an aging evaluation in different ways, such as (a) directly applying the plant temperature data in the evaluation, or (b) using the plant temperature data to demonstrate conservatism when using plant design temperatures for an evaluation. Any changes to material activation energy values as part of a reanalysis are to be justified on a plant-specific basis. Similar methods of reducing excess conservatism in the component service conditions used in prior aging evaluations can be used for radiation and cyclical aging.

Underlying Assumptions: EQ component aging evaluations contain sufficient conservatism to account for most environmental changes occurring due to plant modifications and events. When unexpected adverse conditions are identified during operational or maintenance activities that affect the normal operating environment of a qualified component, the affected EQ component is evaluated and appropriate corrective actions are taken, which may include changes to the qualification bases and conclusions.

Acceptance Criteria and Corrective Actions: The reanalysis of an aging evaluation could extend the qualification of the component. If the qualification cannot be extended by reanalysis, the component is to be refurbished, replaced, or requalified prior to exceeding the period for which the current qualification remains valid. A reanalysis is to be performed in a timely manner (that is, sufficient time is available to refurbish, replace, or requalify the component if the reanalysis is unsuccessful).


Evaluation and Technical Basis

1. Scope of Program: EQ programs apply to certain electrical components that are important to safety and could be exposed to harsh environment accident conditions, as defined in 10 CFR 50.49 and Regulatory Guide 1.89, Rev.1.
2. Preventive Actions: 10 CFR 50.49 does not require actions that prevent aging effects. EQ program actions that could be viewed as preventive actions include (a) establishing the component service condition tolerance and aging limits (for example, qualified life or condition limit) and (b) where applicable, requiring specific installation, inspection, monitoring or periodic maintenance actions to maintain component aging effects within the bounds of the qualification basis.
3. Parameters Monitored/Inspected: EQ component qualified life is not based on condition or performance monitoring. However, pursuant to Regulatory Guide 1.89, Rev.1, such monitoring programs are an acceptable basis to modify a qualified life through reanalysis. Monitoring or inspection of certain environmental conditions or component parameters may be used to ensure that the component is within the bounds of its qualification basis, or as a means to modify the qualified life.
4. Detection of Aging Effects: 10 CFR 50.49 does not require the detection of aging effects for in-service components. Monitoring or inspection of certain environmental conditions or component parameters may be used to ensure that the component is within the bounds of its qualification basis, or as a means to modify the qualified life.
5. Monitoring and Trending: 10 CFR 50.49 does not require monitoring and trending of component condition or performance parameters of in-service components to manage the effects of aging. EQ program actions that could be viewed as monitoring include monitoring how long qualified components have been installed. Monitoring or inspection of certain environmental, condition, or component parameters may be used to ensure that a component is within the bounds of its qualification basis, or as a means to modify the qualification.
6. Acceptance Criteria: 10 CFR 50.49 acceptance criteria are that an inservice EQ component is maintained within the bounds of its qualification basis, including (a) its established qualified life and (b) continued qualification for the projected accident conditions. 10 CFR 50.49 requires refurbishment, replacement, or requalification prior to exceeding the qualified life of each installed device. When monitoring is used to modify a component qualified life, plant-specific acceptance criteria are established based on applicable 10 CFR 50.49(f) qualification methods.
7. Corrective Actions: If an EQ component is found to be outside the bounds of its qualification basis, corrective actions are implemented in accordance with the station's corrective action program. When unexpected adverse conditions are identified during operational or maintenance activities that affect the environment of a qualified component, the affected EQ component is evaluated and appropriate corrective actions are taken, which may include changes to the qualification bases and conclusions. When an emerging industry aging issue is identified that affects the qualification of an EQ component, the affected component is evaluated and appropriate corrective actions are taken, which may include changes to the qualification bases and conclusions. Confirmatory actions, as needed, are implemented as part of the station's corrective action program, pursuant to 10 CFR Part 50, Appendix B. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the corrective actions.
8. Confirmation Process: Confirmatory actions, as needed, are implemented as part of the station's corrective action program, pursuant to 10 CFR Part 50, Appendix B. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the confirmation process.
9. Administrative Controls: EQ programs are implemented through the use of station policy, directives, and procedures. EQ programs will continue to comply with 10 CFR 50.49 throughout the renewal period, including development and maintenance of qualification documentation demonstrating reasonable assurance that a component can perform required functions during harsh accident conditions. EQ program documents identify the applicable environmental conditions for the component locations. EQ program qualification files are maintained at the plant site in an auditable form for the duration of the installed life of the component. EQ program documentation is controlled under the station's quality assurance program. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the administrative controls.
10. Operating Experience: EQ programs include consideration of operating experience to modify qualification bases and conclusions, including qualified life. Compliance with 10 CFR 50.49 provides reasonable assurance that components can perform their intended functions during accident conditions after experiencing the effects of inservice aging.


References

10 CFR 50.49, Environmental Qualification of Electric Equipment Important to Safety for Nuclear Power Plants, Office of the Federal Register, National Archives and Records Administration, 2005.

DOR Guidelines, Guidelines for Evaluating Environmental Qualification of Class 1E Electrical Equipment in Operating Reactors, November 1979.

US NRC Regulatory Guide 1.89, Rev. 1, Environmental Qualification of Certain Electric Equipment Important to Safety for Nuclear Power Plants, U. S. Nuclear Regulatory Commission, June 1984.

NUREG-0588, Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment, U. S. Nuclear Regulatory Commission, July 1981.

US NRC Regulatory Issue Summary 2003-09, “Environmental Qualification of Low-Voltage Instrumentation and Control Cables” dated May 2, 2003.